Table 102

Back Up Next


Mass Properties of Geometric Shapes


This table provides formula for calculating mass and mass moment of inertia for various geometric shapes.

Formula for Bar, Disk, Rectangular Prism, Full Cylinder and Hollow Cylinder is provided.


 

Mass Properties of Shapes
Nomenclature:

rho = density, weight/unit volume

m = mass

I = mass moment of inertia

g = acceleration of gravity

 

Rod Illustration
Rod relationships:
------------------
m = 3.14159 * d^2 * l * rho / (4 * g) 
Iy = m * l^2 / 12
Iz = m * l^2 / 12
Ix = m * d^2 / 8

 

Round disk Illustration
Round disk relationships:
-------------------------
m = 3.14159 * d^2 * t * rho / (4 * g) 
Iy = m * d^2 / 16
Iz = m * d^2 / 16
Ix = m * d^2 / 8

 

Rectangular prism Illustration
Rectangular prism relationships:
--------------------------------
m = a * b * c * rho / g 
Iy = m / 12 * (a^2 + c^2)
Iz = m / 12 * (b^2 + c^2)
Ix = m / 12 * (a^2 + b^2)

 

Cylinder Illustration
Cylinder relationships:
-----------------------
m = 3.14159 * d^2 * l * rho / (4 * g) 
Iy = m / 48 * (3 * d^2 + 4 * l^2)
Iz = m / 48 * (3 * d^2 + 4 * l^2)
Ix = m * d^2 / 8

 

Hollow Cylinder Illustration
Hollow Cylinder relationships:
------------------------------
m = 3.14159 * l * rho / (4 * g) * (d0^2 - di^2)
Iy = m / 48 * (3 * d0^2 + 3 * di^2 + 4 * l^2)
Iz = m / 48 * (3 * d0^2 + 3 * di^2 + 4 * l^2)
Ix = m / 8 * (d0^2 + di^2)


Back Up Next