This table provides formula for calculating mass and mass moment of inertia for various geometric shapes.
Formula for Bar, Disk, Rectangular Prism, Full Cylinder and Hollow Cylinder is provided.
Mass Properties of Shapes Nomenclature: rho = density, weight/unit volume m = mass I = mass moment of inertia g = acceleration of gravity
Rod relationships: ------------------ m = 3.14159 * d^2 * l * rho / (4 * g) Iy = m * l^2 / 12 Iz = m * l^2 / 12 Ix = m * d^2 / 8
Round disk relationships: ------------------------- m = 3.14159 * d^2 * t * rho / (4 * g) Iy = m * d^2 / 16 Iz = m * d^2 / 16 Ix = m * d^2 / 8
Rectangular prism relationships: -------------------------------- m = a * b * c * rho / g Iy = m / 12 * (a^2 + c^2) Iz = m / 12 * (b^2 + c^2) Ix = m / 12 * (a^2 + b^2)
Cylinder relationships: ----------------------- m = 3.14159 * d^2 * l * rho / (4 * g) Iy = m / 48 * (3 * d^2 + 4 * l^2) Iz = m / 48 * (3 * d^2 + 4 * l^2) Ix = m * d^2 / 8
Hollow Cylinder relationships: ------------------------------ m = 3.14159 * l * rho / (4 * g) * (d0^2 - di^2) Iy = m / 48 * (3 * d0^2 + 3 * di^2 + 4 * l^2) Iz = m / 48 * (3 * d0^2 + 3 * di^2 + 4 * l^2) Ix = m / 8 * (d0^2 + di^2)